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ABSTRACT

A semi-Markovian point process is defined, for which the intervals

of time between successive events have phase type distribution. The

distribution of the number of events in an interval is examined, and it is

shown how the expected number of events in an interval may be efficiently

computed. A stationary version of the process is analysed. In parti-

cular, the necessary and sufficient condition under which the new process

is a renewal process is determined. Simple sufficient conditions are

presented.
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Introduction

most of the literature on queueing theory deals with systems for

which arrivals occur according to a renewal process. From the available

results, it is clear that the analysis of a queueing system with a general

non-renewal arrival process is very difficult.

In the present paper, we define and discuss a special semi-Markovian

point process. It is assumed that there are N different types of inter-

vals, each with a phase type distribution. The types of successive intervals

are determined by a Markov chain with transition probability matrix P.

If a given interval is of type i, 1 < i < N, then the following interval

is of type J, 1 < j I N, with probability P j. Phase type distributions

have great versatility and the structure of the process is very simple.

It should, therefore, be a useful tool in modeling queueing systems with

non-independent arrivals, and provide analytically or algorithmically

tractable results.

We shall give a formal definition of the process in the next section.

We examine in Section 2 the number of events in an interval and show how the

expected number of events may be efficiently computed. In Section 3, we

analyse the correlation structure of a stationary version of the process.

In particular, we determine the necessary and sufficient condition under which

that process is a renewal process. In Section 4, some examples such as

the interrupted Poisson arrivals are considered in further detail.

Notational convention. All vectors are represented by underlined

letters. The context indicates whether they are row or column vectors.

In order to facilitate the reading of the formulas, the expression v w

always represents the inner product of a row vector v by a column vector

!;the expression w v always represents the product of a column vector



2

! by a row vector v, yielding a matrix whose (i,j)th element is

wivF

1. The Phase Type Semi-Markovian Point Process

1.1 Phase Type Distributions

Phase type distributions have been introduced by Neuts (4]. Con-

sider a (n+l)-state continuous-parameter Markov process, with n transient

states and one absorbing state. Its infinitesimal generator Q is of the

form

0

where T is a square matrix of order n, with Tii < 0, Tij > 0, for

i # J, and such that T 1 exists. The n-vector T has nonnegative

entries, and is equal to -Te. The vector e has all entries equal to one.

The vector of initial probabilities is denoted by (,n+l), and satisfies

_a e + an+l =  , 0 <a n~ll < 1.

The probability distribution F(.) of the time till absorption in the

state n + 1 is then given by

F(x) - 1 - a exp(Tx) e , for x > 0

The probability distribution F(.) is said to be of phase type (in short,

"F is PH"). The pair (Q,T) is called a representation of F(.). In

this paper, we assume that an+l a 0, so that F(.) does not have a jump

at 0. Furthermore, we assume that the representation is such that each

state has a positive probability of being visited before absorption. Under

that assumption, the Mlarkov chain with generator T + T * a is irreducible.

mid
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The moments 1 (k) of F(.) about the origin all exist and are given

by

(k) . (_l)k k1 a T-k e for k > 1

1.2 The Point Process

We consider N P-distributions, with representations (a ,Ti ), where

Ti is a square matrix of order ni, for i - 1, ..., N, and an N-state

irreducible Markov chain with transition matrix P. If the Markov chain

has made a transition to the state i, the next transition is to the state

J, with probability Pij, and the time between these transitions has a PH-

distribution Fi (), with representation (ci,Ti), independent of J. The

epochs of transitions for the Markov chain correspond to the epochs of events

for the point process.

We denote respectively by N(t), C(t) and 0(t), the number of events

in (O,t], the state of the Markov chain P at time t, and the state

of the Markov chain T C(t), at time t. In other words, suppose that the

last event before t occurred at time T. At time T, the Markov chain P

made a transition to the state C(T) - J, say, and an initial state was

chosen for the Markov chain Tio according to the probability vector a

In the interval (t,t], the Markov chain T underwent zero, one or more

than one transitions, without entering its absorbing state. At time t,

C(t) - J, and the Markov chain T is in the state 0(t).

We make the following independence assumption. For every t > 0, the

intervals of time between events are conditionally independent, given the

path function of the Markov chain P. It is then clear that the process

{N(t), C(t), 4(t), t > 0} is a Markov process with state space

---
x.1
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{(VJ,O); v > 0, 1 < J _1 N, 1 < 0 < n }. In order to distinguish easily

between the Markov chain P and the Markov chains Ti, i - 1, ... , N, we

shall refer to the states of any Markov chain Ti as "phases".

2. The Number of Events in an Interval

We define the probabilities Sj,;j,% P[N(t) - v. C(t) =J, 0(t) = 0 I

C(0) - i, D(0) a ], and order the elements ((j,); I <j IN, 1 < <n }

as follows: (1,1), (1,2). ..., (i,n 1),(2,1), .... (2,n 2)* ..., (N,1), .,

MY. Finally we define the block-partitioned square matrix S(v,t) of

order n1 + n2 + ... + nN  by

S, l,t). S1,2 (V,t ) ... Si,'N(V, t)'

S2 ,1 (v,t) S2 ,2 (v,t) ... S2,N(v,t)

S(v t) =

S N, 1(v't) SN, 2 (V,t) ... S N,N(v, t)

where the blocks Si'j(vt) have ni rows and n columns, and the

( ,*)th element of S ij(vt) is equal to Si,;j, (v,t).

The Chapman-Kolmogorov equations for the process {N(t), C(t), 0(t), t > 0}

may be written in matrix notation as

St (Ot) - 0 , for 1 #. ,

M S i(0,t) Ti,  for i - J ,

N
sJ(Vt) M Si,j(vt) T1 - k si,k(v-l,t) Pkj T* "

for v > I

Therefore, the matrices S(v,t) satisfy the system of linear differential
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equations:

S' (O't) - S(O't)T

S'(v,t) - S(,v,t) YT- S(v-1,t) YA , for v > I

with initial conditions S(0,0) - I, S(v,O) - 0, for v > 1, where the

square matrices Y and X are of order n 1 + n 2 + + nfN The matrix

Y is block-diagonal and given by

T 1 0 0 .. 0

o T 2  0 . 0

T 0 0 T30

0 0 0 TN

and the block-partitioned matrix A is given by

P 21.2~. 'S 2242*42 P'2NE-2*

PN14*11l PN29*2 .. NNEN*2NI

By t, we denote an ni -vector with each entry equal to one.

The matrix-generating function (z,t) - 7 zv S(v,t), defined for
Vi-0

jzi < 1, satisfies the differential equation

-i (Z't) - (Z't) Y (1-21) , (Z,0) . I, for t > 0

Hence, we have that S(z,t) - exp [T(I-zA)tI. In particular, (O't)

exp(Tt), as is to be expected. Also, ?(1,t) -exp (Tf(I-A)t], which is
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again obvious, since the process (C(t), 0(t), t > 01 is a continuous para-

meter Markov chain with infinitesimal generator f(I-A).

We now define the matrix M(t) " z S(z't)tl' and the vector

_(t) - M(t)e. We partition that vector as m(t) - j

where A1 (t), i - 1,...,N, has ni components. The component mi,(t)

is the expected number of events occurring before time t, given the initial

conditions C(O) - i, and 0(0) - F. Furthermore, we denote by the in-

variant probability vector associated with P, i.e. ) P - y, y e - 1.

Every entry of y is strictly positive. Finally, we denote by i_ the

stationary probability vector of T(I-A), i.e. ff T(I-A) - 0 e 1.

Lemma 1.

The vector m(t) is given by

_(t) - m*t e - (I-H)[t*TI-T(I-A)] Y e

(2)

- [TI-exp(T(I-X)t)] [Er*n-T(I-)- 1 _a , for t >0 ,

where the square matrix H of order n1 + n2 + ... + nN is equal to

e * it. '* is any real number such that T* > max (-(T(I-))i,;i,;

1 < i <N, 1 < In i  and m* is given by

m* - -_w e. (3)

Moreover, if we partition w_ as w_- ( _l,_2...,9N), where i is an

ni-vector, i 1, ..., N, we have that

- i --Si (-Ti)' for 1 1, ... , N. (4)

The normalizing constant c satisfies

m* C c Q _1) " (5)
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(1) 1)T-l
where the N-vector has components 1) - T1e.

Proof. To prove the first part of the lemma, we observe that the point process

under consideration is a special case of the "Versatile Markovian Point Process"

defined in Neuts [5]. Equation (2) then follows by adapting Equation (12)

of [5] to our process. The proof of the second part is immediate.

Remarks

1. The third term in (2) tends to zero as t tends to infinity, since

I-exp[T(I-A)t] = H - exp ((l,t)], does. Therefore the first two terms

give the linear asymptote of m(t).

2. In order to compute m(t), it is not necessary to evaluate the inverse

of the large matrix [T*H-i(I-X)]. It suffices to determine the vector u

defined as

u = - [-*TI - (I)] -1 T e . (6)

This may be done efficiently as we show below.

3. The main problem in computing m(t) from (2) therefore lies in eval-

uating the third term, which we denote by v(t). The vector v(t) is the

solution of the system of differential equations, of order nI + n2 + ...

+ nN, given by

v' t)=(I-A) v(t) , (O) =(11-I) a_

LenaA 2

If we partition the vector u as u = (uU 2 ,..., N), where

is an ni-vector for i 1, ... , N, then

T-l

+ .i +*Ti e, for i 1, ... ,N, (7)
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v--1

where v - -m* (I-P+r)- I P V (1 ) 
_

, -m*/' * + -Y :. (2- h v i
(2) 3 (2 h(2)

The vectors and h have N components, given by u

2 A, T-2, hi W m* U for i , .N.

Proof. The vector u is the unique solution to the system

[T*H - T(I-A)] u - T e . (8)

Upon substitution of the stated expressions for u and after some routine,

but belabored calculations, it is verified that (7) indeed provides the solu-

tion to (8). The details are omitted for the sake of brevity.

The equation (2) now becomes

m(t) - m*te + m*(I-H)(T -N)e + m*[n-exp(T(I-!)t)] (T-1-N)e
(9)

for t > 0

where the matrix N is block-diagonal and given by

N 0 ... 0

N- 0 N2  ... 0

0 0 NN

Ni is a square matrix of order ni , and is equal to [(I-P+r) -I P U()] i I.

Remark.

In order to determine (T--N)e, it is not necessary to invert matrices.

One merely solves N+l systems of linear equations, i.e. the systems

T x - e, for i - 1, ... , N, and the system (I-P4f)y - P R

"+t .~~ ~ --i'7- .... l=

+.+,41
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3. A Stationary Version of the Point Process

Usually, the stationary point process, which we denote by P*, is ob-

tained by choosing the initial state (C(O),O(O)) according to the proba-

bility vector w. We consider a slightly different process, denoted by P,

for which (C(O),O(O)) is chosen by P[C(O) - J,0(O) (a] ( ) . In

other words, we choose the time origin so that at time 0-, an event has occured,

the type of the next interval is chosen according to the stationary vector I

of P. In view of our ultimate objective of using this process to model

arrivals to queueing systems, the process has the following interesting

property.

Let us denote by X the interval of time between the (n-l)st and then

nth event (between time 0 and the first event, if n = 1).

Lemma 3

The random variables (X ,n>ll have a common marginal distribution

r(.). The distribution r(.) is PH, and has a representation (a,T), where

the vector a has n1 + n2 + ... nN  components and is given by A =

( 1 2 .2 ,. .. , . Therefore

N
r(x)- 1- i .i exp(Tix) _, for x > 0

i-i1

and the kth moment m(k) of r(-) about the origin is equal to

m(k) ()(k) for k >k

The N-vectors Ejk) have entries U(k) - (-I) k! a, Tk e
i -

Proof. The proof is obvious.

In the remainder of this section, we examine the correlation strunture

of the intervals of time between events. This is related to recent work by

Simon (7]. Because of the difference in our approach, we postpone discussion

! . . . . . .. .. .. .. ... .: .. .. .. . 1. , .: , - ..... .......... , .- - ... . ....... -
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of this relation to the end of this section.

We now introduce the notion of linear dependence for PH-distributions.

Definition 1

The set ((a ,Ti), 1 < i - Ni is a set of linearly independent PH-
N

distributions if and only if Z diFi(x) a 0, for all x > 0, implies
i-1

that di is equal to zero, for i - 1, ..., N, where F i(x) - 1 -

.i exp(Tlx)e , for x > 0

Definition 2

The PH-distribution (Q,B) is linearly dependent of the PH-distributions

(ai,Ti), i = 1, ..., N, if and only if there exist {d1, d2 ... , dNI, such

that di 0 for some i, and 1 - _ exp(Bx) e = Z diFi(x), for all x > 0,
i=l

where the Fi(x) are defined above.
N

It is clear that for any such set {dl, ..., dNI we have Z di - 1.
i-1

Remarks

1. The term "linearly independent" has been chosen for the following reason.
N

We easily observe that Z di Fi (x) is equal to zero for all positive x

if and only if Z di e is equal to zero for all k > 1. The defini-
i-l

tion 1 is therefore equivalent to the condition that the infinite vectors

2
)i - 1, ..., N, are linearly independent.

2. If (_B,B) is linearly dependent of t1_i,Ti), i - 1, ..., N1 , and

di > 0, for all i - 1, ..., N, then (B,B) and (0oBo) are two repre-

sentations of the same PH-distribution, where

= (d a 'd2c2 ,'d )

and

Ti 7 , F
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T 0 0

B 0 T2  ... 0

0

0 0 ... TN

The proof is elementary. Similarly, if di < 0, for i - 1, ... , J, and

di >0, for i - J + 1, ... , N, then clearly

J N
1 + Z I i l I Z dii-i i-J+l

If we set the latter quantity equal to d, then C_1,BI) and (_2,B2)

where

B 0 ... 0

0 T ... 0
B -. 1

0 0 ... Tj

8-rJ+l dN
-2 =-J+Jl' "2' N

T J+l 0 .. 0

0TB-2 TJ+2 ... 0

0 0 ... TN

are two representations of the same PH-distribution.

4
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Let now the PH-distributions {(esiVTi),' i -1, .. ,NI which define

'I the point process, be expressed as linear combinations of the linearly

independent PH-distributions QC ,Z1  j -1 .. L), with L < N, i.e.

L
F i xW Z di G (x)W for all x >0, and il-, ..., N,

where G W - 1 - exp(Z x)e. We denote by D the matrix with (i,j)th

element equal to d .j We also define the vectors F(x) - (F px),F2(X),....

FN(x)), GWx) (G (x),G (x),. .., WGjx), and u* (k) (1 *k
N 1 2 L 1L

for k> 1, where 11*(k) is the kth moment about the origin ofG

We then clearly have that

F(x) -D G(x) ,for x > 0 (10)

and

V(k) . D U*(k) , for k > 1 .(11)

It is also clear that D e -e

We emphasize that the set of PH-distributions {(C 1 Z ),j 1, .. ,LI

is not necessarily a subset of {(a T ),1 1, .. ,NI. The following is an

illustrative example.

if

43 2 ) 2 {(2/3,1/3), 1~l J

4c3 T 3) {(1/3,2/3), { 2 J
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(S4,T4)" (1/3,1/3,l/3), f- -x 2 J
0 0 -A3

then we may either choose

(Ciz) - ( T) , j - 1, 2, 3,

with

1 00

0 1 0
D-

O 0 1

2/5 1/5 2/5

or alternatively

(dz j ) - {(l,(-Aj)} j - 1, 2, 3,

in which case D is given by

1/2 1/2 0

2/3 0 1/3D-
0 1/3 2/3

1/3 1/3 1/3

Lemma 4

The covariance between X and X.., , for n > 0, m > 1, is given

by

Coy (Xn ,X ) - p(l) A(1 ) (P-r) ,
( )  (12)

and also by

coy ( xn+m) -,(1) DT &(m) (PO-r) D I.,l)) (13)

I
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where for any vector x, the matrix A(x) is defined by diag (x,.. .xN)-

Proof. By Lemma 3, the covariance is equal to

Coy (XXn.m) - E(X,Xn.S) - E(Xn ) E(Xn m )

N H
N H (1) (1) (1) (1)Z- Z~ (Y (P* ) 1u  4j - Yj U ,i

i-I J-1 I ij - Yi~ ~ ~

which proves (12). Equation (13) results from (11).

From Lemmas 3 and 4, we conclude that, for the process , the intervals

of time between events are identically distributed and are in general cor-

related. If the Markov chain P is aperiodic, then lim Pm - r, and the

covariance of Xn and Xn+m  tends to zero as m tends to infinity.

To conclude this section, we shall now examine under what condition

the process P is a renewal process. If is a renewal process, then it is

characterised by its interrenewal distribution r(.). The distribution

r(-) is PH and is represented as r(x) - 7.F(x), for x > 0, (by Lema 3)

or as r(x) - 7D G(x), for x > 0, where (Gl(x),...,GL(x)) is any set of

linearly independent PH-distributions satisfying (10), and D is the cor-

responding matrix. The next theorem holds for any choice of G(x).

Theorem 1

The process W is a renewal process if and only if the following pro-

perty holds.

For all k > 2, and for all (T'" "",T k) satisfying 1 < Ti< L,

for i - 1, ..., k,

k
A r n [(P-r)Ai] e- 0 , (14)

or equivalently,

k k
A (IT P a T) e I (R , (15)
1 i-2 i i-l i



where D. represents the jth column of the matrix D, and A -diag(.)

Proof. The proof is very simple. Since the variables (X nn > 0) are identi-

cally distributed, P is a renewal pr--'cess if and only if for all k > 2,

the random variables X1 9 X2,.. . are independent, which is true if and

only if

k k
P[ n {X !xi}] n I PEXi xil for all x, l' * x.k 0,I iml 1-im

equivalently, if

N k k
E (Y F V(x 1  HI P F (x) H y VF V(x.)}in0
=1 ~i i J=2 ij-liVj "i J-1 Vi J

l<i<k

for all xi, ... ,I XkO L if and only if (by (10))

N L k
E E fy d (I! (P )d

vil r-l V iViti J=2 vj-l"J Yj Yi

1l<i <k k

*UlGrT (xY) - 0, for all xl, *.~ x. >0

Since the PH-distributions Gic. are linearly independent, this holds if

and only if

N k

Z{yv dv rn (P -Y )d liV o,
V i i J=2 vj-l'j ji i

l-cick

fovr s a nd T1 .. such that 1 < TiIL. The condition (14) is now

obiosan i i asimple mtetopvethat (14) and (15) are equivalent.

IP~
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This theorem provides us with a technical condition which is not very

attractive. The following corollary is more interesting and useful for

modeling purposes.

Corollary 1

For ? to be a renewal process, it is sufficient that

(P-r) D - 0, (16)

or that

DTA(i) (P-r) - 0 (17)

If L is equal to one, then both conditions are always satisfied and P

is always a renewal process.

If L is equal to N, then both couditions are necessary, as is a

renewal process if and only if the matrix P-r is equal to zero.

Proof. The condition (16) is obviously sufficient, as (P-r)v.i 0 for

all i implies that (Pn-r) AI e = pnl(P-r) Di = for each n > i and

each i - 1, ... , L, which in turn implies (14).

Similarly, the condition (17) is sufficient, since

.I A(Pn-r) a • 1 (P-r)Pn-1 =D T A) (P-r)Pn-1

If L is equal to one, then D - e and both conditions (16) and (17)

are satisfied.

If L is equal to N, then D may be chosen equal to I, and both

(16) and (17) reduce to P-r - 0. The necessary part of the condition re-

sults from (14): if k - 1 , then 7 Ai(P-r) Aje must be equal

to zero for all 1, j - 1, ... , N. As D 1 I, this reduces to y,(P i-Y

0, for all L, j = 1, ... , N. Since y > 0 for all i, the Corollary is

proved.
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Remarks

1. One easily proves that condition (16) holds if and only if there exist

a vector v such that P D - e • v. Therefore, it is not necessary to

determine y in order to check whether (16) holds or not.

2. The conditions (16) and (17) are not equivalent. Simple examples exist,

for which one of the conditions holds, but not the other.

3. If neither (16) nor (17) holds, the combined condition,

DT A(x) (P-r) D - 0 , (18)

is not a sufficient condition for to be a renewal process (this is

proved by a counterexample), but is the necessary and sufficient condition

for two successive intervals of time to be independent.

Simon [7] examines equivalences for Markov-renewal processes and, in

particular, the conditions under which a Markov-renewal process is equiva-

lent to a renewal process. It appears that for our process P, Theorems

2.2.1, 2.2.2 and 2.2.9 (71 respectively correspond to the sufficient condi-

tion (17), and to the cases L - 1 and L - N in Corollary 1. From

Theorem 2.2.8 [71, results the following necessary condition. There exist

a non-negative vector w such that

D T(A(w) P _ T •) - 0

moreover, if condition (17) holds, that vector clearly is y; if condition

(16) holds, we do not know w, but the right eigenvector corresponding to

r(t) (in the terminology of (71), is F(t).

Because of the special structure of our point process, and In particular

because the distributions, we consider, are PH, we have obtained conditions

which do not have to be examined for each t.
.j
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Finally, let us mention that Simon [7] introduces and analyses the

notion of collapsibility, which generalizes to Markov renewal processes the

notion of lumpability for Markov chains - see Kemeny and Snell [2]. If

the matrix D contains only entries equal to zero or one, this corresponds

to the notion of collapsibility. As we have observed, the entries of D

may take any real values. If those values were all positive, one might con-

sider that D corresponds to some sort of randomized collapsibility, since

the row sums of D are equal to one. This correspondence appears difficult

to extend to the case where D contains negative entries.

4. Examples

4.1 Exponential distributions

The case where the PH-distributions (a,Ti) are exponential,

respectively with parameter Ai. is particularly simple. We then immediately

obtain that

T -A() , P, m* -

7riinm*Yi , for i - 1, ... ,N,

where the vectors A and A respectively have components equal to A

and 1. ter some simple manipulations, (9) reduces to

3(t) - m*t e +m* (I -mr ,--1 )) (T - p+ r)-l 1-l

(19)

+ 3* [m*r a(A) - exp (-A( ) (I-P)t)] (I - P + r)-l 2-l

Exponential distributions with different parameters are linearly inde-

pendent. Therefore, the distributions ,Z 1 < j < L} may be chosen to

be the set of different exponential distributions in { (,T L ) , i - 1, ... , N),

and the matrix D has a very simple structure: each element of D is either

''
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equal to zero or one, each row of D contains exactly one element equal to

one, each column of D contains at least one element equal to one. We

may then strengthen Corollary 1.

Corollary 1'.

If the entries of D are each equal to zero or one, and if L - N - 1,

then a necessary and sufficient condition for to be a renewal process is

that one at least of Equations (16) or (17) holds.

Proof. The technical proof is belabored. We do reproduce it here since it

cannot be extended to L < N - 2.

If the matrix P has identical rows, then P is obviously a renewal

process, with hyperexponential intervals between events, and the matrix

(I-P+r) - 1 in (9) may be replaced by the identity matrix.

4.2 Platooned events

Let us assume that the process consists of groups of events, the number

of events in a group has a discrete PH-distribution (fF), the intervals of

time between events in a given group have PH-distribution (_,A), while the

intervals of times between groups have a PH-distribution (B,B). Such a

process may be used to model platooned arrivals to a system, as is done in

Neuts and Chakravarthy [61. Then,

F Ie-Fe
P - - (20)

fFI 1-f_ Fe

P is a square matrix of order N if F is a matrix of order N - 1;

( ) - (q,A), for i - 1, ..., N - 1, and (T)-

Simple calculations yield that the stationary probability vector y

of P is given by w (,7 N) , where

V -7
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1 v F N '!-'s, (21)

-1 -1
v - (f(I-F) e)-1 f(I-F)-  , (22)

and that

m* (e) (- A e) + yN (-B B e)] ,

r i-m* yi A , for i-1, ...,N-1,

-1-m*Y N0B-1 for i -N.

The expression (9) does not simplify much.

If the PH-distributions (_,A) and (_,B) are different, then we

clearly may choose D equal to

1: 0
D (23)

and we may complete the corollary 1 as follows.

Corollary 1"

If the matrix D is given by (23), then the process P is a renewal

process if and only if

TD A() (Pn-) D - 0 , for all n > 1 . (24)

Proof. We partition the matrix P and the vector I as

.--- . __-7' (Y1 Y2)

{!21 P22

- - - - - - - - - - - - - - - - - .* +, , .. . ,++ --., r 4+.:
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Simple calculations yield that

)-l -1 e-l
-l = Y2 -21 (I-Pll1 2 (1 + 121 (i-ell) _) .

a. (24) is a necessary condition. This is easily proved as follows. For

n - 1, it is equivalent to (18), the condition for two successive intervals

to be independent. For n 2 , we consider (14) with k 3. Since

A (P-r) A1 (P-r) A e +. A (P-r) A2 (P-r) A e

A T (P-r) A T e must be equal to zero, this proves (24) for n = 2.

Similarly, we prove that (24) is necessary for larger values of n .

b. (24) is a sufficient condition. It is easy, although tiresome, to show

that (24) implies that

.n+l

X 1 e (P 2 1 -x) Cl e - 0 , for all n > 0 , (25)

whr C 1 -

where C 1 e • " This in turn implies that

n n-l V.M-l-v _n

- 1 Zl Cl i ' (P2 1 -1 1 ) C1  C1 -

nn-0
(r -- -- ) cI 0

It is then a simple matter to prove that for v equal either to 1 or 2

(P-r)n A2 (P-r)m A e- 0

and (P-r)n A1 (P-r)m aV e - (P-r)n AV e , for n,m > 1

Therefore, the left-hand side of (14) is equal to zero if T - 2 for any

i - 2, ... , k - 1 and is otherwise equal to

(JD A(.X) (P-r )k- 1 D)TI

This completes the proof.
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Remark. This corollary has the following simple interpretation. If D is

given by (23), then N - I of the distributions (a,Ti), 1 , ... , N

have a "coumon" type, the last one has an "odd" type. Let N denote the

number of intervals of the common type between two consecutive intervals of

the odd type, and let N2  similarly denote the number of intervals of the odd

type between two intervals of the common type. From Corollary 1", it results

that

the process P is a renewal process if and only if N1  and N2

both have a geometric distribution, the parameters being respective-

ly equal to (1-P 2 2 ) and P2 2.

Clearly, N2 has a geometric distribution with parameter P22. The equa-

tions (25) may be written as

n en+l
P-21 P e ) for n > 0 (26)

n-
As P[N1  n] =£1(Pl n-ll • n ) e-n (" e)-(1- 2 )n Y2

(1-P22)n P2 2 , this completes this proof.

In the present case, from the equations (20-22) and (26), it results that

the process of platooned events is a renewal process if and only if

f Fn  ( -(f(I-F) -  ) 1) for n>0

where 1 + f (I-F) e is the expected number of events in a platoon.

4.3 The Interrupted Poisson Process

This process is used in models for telephone engineering (Heffes (1]).

We consider a process in a random environment, with two alternating environ-

ment states. Both states have exponential duration, with parameters a1  and

a2  respectively. While the process is in the first environment state (on-state),.......
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an independent Poisson process of rate A is turned on. When the environ-

ment is in the second state (off-state), no arrivals can occur. Neuts and

Chakravarthy [6] have shown that the interrupted Poisson process is a special

case of the platooned events process, and that the number of events in a

platoon is geometric, therefore, the stationary interrupted Poisson process is

a renewal process. This was already shown by Kuczura [3] by different methods.

In fact, it appears that the interrupted Poisson process is a very

special case of the type of processes analysed in the present paper. From

[61, one observes that the process can be described by two states and two

PH-distributions, the matrix P and the PH-distributions are as follows.

____ la 1

PA,, (27)

A+ai A+oI

(1), Ta (- ),

-A-a 1  A+aI  0

2 (,0,0) T 2 - 0 -X-C1 X+a1

0 a1a2 (A+a1 ) -a 2

The first state of the Markov chain P corresponds to the following event

(the interrupted Poisson process is in the on-state, and an arrival will

occur before the end of the on-state). The second state corresponds to the

following composite event {the interrupted Poisson process is in the on-

state, no arrivals will occur before the next off-state or the process is in

the off-state, or the process has returned to the on-state and an arrival will

occur before the next off-statel. From the structure (27) of P, it is

i .. . . ..7 -~ . . . . . . . .. . . , -
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obvious that the interrupted Poisson process is a renewal process.

References r-
[1] H. Heffes (1973)

Analysis of First-Come, First-Served Queueing Systems with Peaked
Inputs
Bell Syst. Tech. Journ., 52, 1215-1228.

(2] J. Kemeny and L. Snell (1960)
Finite Markov Chains
Van Nostrand, Princeton, New Jersey.

[3] A. Kuczura (1973)
The Interrupted Poisson Process as an Overflow Process
Bell Syst. Tech. Journ., 52, 437-448.

[41 M. F. Neuts (1975)
Probability Distributions of Phase Type
Liber Amicorum Prof. Emeritus H. Florin, Dept. of Math., Univ.
Louvain, Belgium, 173-206.

[5] M. F. Neuts (1979)
A Versatile Markovian Point Process
J. Appl. Prob., 16, 764-779.

[6] M. F. Neuts and S. Chakravarthy (1980)
A Single Server Queue with Platooned Arrivals and Phase Type Services
Technical Report 50B, Applied Mathematics Institute, University of
Delaware.

(7] B. Simon (1979)
Equivalent Markov-Renewal Processes
Technical Report VTR 8001, Department of Industrial Engineering and
Operations Research, Virginia Polytechnic Institute and State University.

Ike.,

........................................................................ ->1

.''..



DOCUENTAION AGE-- -READ INSTRUCTIONSDOCUENTTIONPAG~--BEFORE COMPLETING FORM

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT &Pt OVRED

PHASE TYPE, SEMI-MARKOVIAN POINT PROCESS.Itri

[77.AUTHR(.)S. CONTRACT OR GRANT NUMBER(a)

\J~' Gy/Latoc~j~JAFOSR 77-32361.

University of Delaware OKUI UBR

Applied Mathematics Institute/
Newark, DE 1971161 f

It. CONTROLLING OFFICE NAME AND ADDRESS

Air Force Office of Scientific Research/NM p18V
Boiling AFB, Washington, DC 20332 C ,---UBRO AE

14. MONITORING AGENCY NAME &AODRESS(iI different from Controlling Office) 15. SECURITY CLASS. (of this report)

(i7I~ 771UNCLASSIFIED
'/'A-.~,I~d15a. DECLASSIFICATION'DOWNGRADING17 SCHEDULE

t 16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribu.tion unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Semi-Markov process, phase type distributions, conditions for independence,
computational probability4

gA ABSTRACT (Continue on reverse side It necessary and identify by block nurnberl

Asemi-Markovian point process is-defined, for whiich the intervals of time
between successive events have phase type distribution. The distribution of
the numiber of events in an interval is examined, and it is shown how the ex-
pected number of events in an interval may be efficiently computed. A station-
ary version of the process is analyzed. In particular, the necessary and
sufficient condition under which the new process is a renewal process is deter-
mined. Simple sufficient conditions are presented.

DD I FA73' 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLSSIFIED W.l. I 7 u
SECURITY CLASSIVICATION OF THIS PAGE (WI..n DateE


